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The dielectric constants for a cylindrical ceramic seal are 

calculated from the measured change in frequency and bandwidth of 

an octagonal resonant cavity due to the presence of the seal. 

Several approximations have been made regarding the fields in the 

cavity and ceramic and the exact shape of the cavity. The resultant 

calculations yield approximately l/2% agreement with known results. 

1. Nature of Resonant Cavity 

The resonant cavity used is an octagonal cavity of non- 

uniform height, Figure 1. For the purpose of expressing the EM 

fields inside the cavity, it is assumed to be a regular right cyl- 

inder. Thus, the fields take the form of simple Bessel functions. 

Upon integration of the fields in order to obtain quantities such 

as stored energy, however, the actual shape of the cavity is taken 

into account so as to yield an approximately correct volume. It 

was seen that while the assumption of the cavity as a cylinder of 

some effective radius was a good one in turns of the contained 

fields, it was very important to use the exact shape in the volume 

integrals. 

2. The E and H Fields Inside the Cavity and Dielectric 

The cavity was assumed to operate in the lowest mode TMOIO 

only and the fields without the ceramic were assumed to be pure 
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Bessel functions. Thus, the two unperturbed fields are (neglect- 

ing time dependence): 

f. 
E = aAoJo(Kor)z 

H = AoJl(Kor)i 

where a E /uo/eo , A0 is a constant, and K. is the free space pro- 

pagation vector. Upon inserting the ceramic, the fields were 

written for three regions: (1) r-A., the inner radius of the ce- 

ramic, (2) A<r<B, inside the ceramic, and (3) r<B, outside the 

ceramic and within the cavity. The first and third regions have 

the usual Bessel function solutions: 

r<A: El = aAoJo(Kr) 

Hl = AOJl(Kr) 

r>B: E3 = a[AIJO(Kr) + A2YO(Kr)l 

H3 = AIJl(Kr) + A2Yl(Kr) 

(24 

where A 0' Al' A2 are constants, Y(Kr) is the Neumann function, and 

K is a modified propagation vector. 

The fields inside the ceramic should be given by two Bessel 

functions as in region (3) with different constants and a complex 

propagation vector K', but the resultant equations can not be 

easily solved. Instead, the fields were approximated by a Taylor 

series expansion modified by the presence of a non-unity dielectric 

constant. They are given by: 

A<r<B: 

I 3 
(2b (r--A > 
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where E' is the real part of the relative dielectric constant of 

the ceramic. 

As a check on this approximation, E' was set to unity and Q 

of the cavity, calculated from the above fields was found to be 

in good agreement with Q calculated from the correct fields (Eq. 1). 

3. Calculation of the Dielectric Constants 

The rest of the program involves the relatively straight- 

forward if non-trivial integration of the fields of Eqs. 2 to get 

the desired quantities and a rather length, iterative computer 

program to actually determine these quantities. A few details and 

problems encountered are mentioned below: 

3.1 Cavity Volume 

The actual plane area of the octagon was calculated 

and from this an effective circular radius (Reff) was 

determined. The effective radius was then used as the 

outer boundary of the cavity. A height function was de- 

termined which was constant from r = 0 to r = B, and then 

sloped down in region (3). This was a function of r and 

was integrated over in the volume integral. 

3.2 Boundary Conditions and Propagation Vector 

The boundary conditions at r = A, r = B and r = effec- 

tive outer radius were solved. The first two gave the un- 

known constants Al and A2 in terms of A0 as an involved 

function of the propagation vector K. The third gave a 

relation of K to the constants AI and A2 (i.e., E3 (Reff) 

= 0). Both of these also involve the relative dielectric 

constant E'. A trial E' was assumed and then the boundary 

conditions were interated until the change in K was less 

than a certain level. This K was then used to determine a 
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to the boundary conditions new E' which in turn was put in 

and looped over to get a new K. 
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This whole process was 

repeated until both quantities were determined to some 

specific degree of accuracy. 

3.3 E' 

E' was determined from the exact formula: 

AL0 Eo(E' -') IEIEO* d'dielectric -= w 
'&O lEIEOn d'total volume 

where w and Aw are the original frequency/and change in 

frequency, E. is the electric field with no ceramic, and 

d-c a volume differential. The following approximations 

were made: 

a. In the numerator, the fields were given by Eq. 1 

for E. and Eq. 2b for E. 

b. The denominator was taken as: 2~~.!-lE1~ dT 

with El = aAoJo(Kr) 

E2 = aAo[JO(KA)-K Jl(KA)(r-A)] 

E3 = a[AlJo(Kr)+A2Yo(Kr)] 

and K and Al and A2 determined using the calculated 

value of E’. This was judged to be the best, not ex- 

tensively hard approximation which could be made. 

Using Eqs. 1 and 2 would have been considerably harder 

and would not have changed the final result greatly. 

3.4 E” 

To find the imaginary part of the relative dielectric 

constant, E", first QO(~’ = 1, K = X0) was calculated from 

Q. = ~oWoPo with wo, o, o W P being original frequency, stored 
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energy, and power loss in walls. From this and the 

measured shifted frequency and bandwidth, the surface 

resistance of the walls was found. Then the two parts 

of the actual Q were calculated. 

Q lossy = wW/P lossy 

Q non-lossy = wW/P 
-1 

and Q= (l/Q,+- 
'n-1' 

4. Conclusions 

A computer program to determine the real and imaginary parts 

of a ceramic seal's dielectric constant has been created. The in- 

put parameters to it are the dimensions of the ceramic, the reso- 

nant frequency and bandwidth of the cavity with the ceramic inside. 

From these the dielectric constant of the ceramic can be calculated. 

Tests run on materials having a known dielectric constant yield an 

accuracy of approximately l/2$. 
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